
FMS communication and I/O
kernels

V. Balaji
SGI/GFDL

FMS Workshop
22 August 2000

Overview

� Hardware models of parallelism

� Programming models for different architectures

� The MPP modules

� Abstract parallel numerical kernels

� Future directions

1

Sequential computing

The von Neumann model of computing conceptualizes the computer as
consisting of a memory where instructions and data are stored, and a pro-
cessing unit where the computation takes place. At each turn, we fetch
an operator and its operands from memory, perform the computation, and
write the results back to memory.

a = b + c

P R M

2

Computation speed

The speed of the computation is constrained by hardware limits: the rate at
which instructions and operands can be loaded from memory, and results
written back; and the speed of the processing units. The overall computa-
tion rate is limited by the slower of the two: memory.

Latency time to find a word.

Bandwidth number of words per unit time that can stream through the
pipe.

3

Hardware trends

A processor clock period is currently � 1 ns, growth rate is 4x/3 years.

DRAM latency is � 50 ns, growth rate is 1.3x/3 years.

Maximum memory bandwidth is theoretically the same as the clock speed,
but far less for commodity memory.

Furthermore, since memory and processors are built basically of the same
“stuff”, there is no way to reverse this trend.

4

Within the raw physical limitations on processor and memory, there are algorithmic and
architectural ways to speed up computation. Most involve doing more than one thing at
once.

� Overlap separate computations and/or memory operations.

– Pipelining.

– Multiple functional units.

– Overlap computation with memory operations.

– Re-use already fetched information: caching.

� Multiple computers sharing data.

The search for concurrency becomes a major element in the design of algorithms.

5

Parallel programming models

� Shared memory parallelism.

� Distributed memory parallelism.

� Multi-threading.

6

Shared memory parallelism

M

P P P P

� Canonical architecture: shared memory (UMA), limited scalability.

� Private and shared variables.

� Critical regions.

7

Distributed memory parallelism

P

M

P

M

P

M

P

M

� Canonical architecture: distributed memory (NUMA).

� Decompose global domain (1:I,1:J) into npes subdomains. (is:ie,js:je)
defines subdomain start and end.

� Copy data between PEs (message-passing or remote memory access).

8

Multi-threading

P

M

P

M

P

M

P

M

� Canonical architecture: cluster of SMPs.

� Divide global domain (1:I,1:J) into nthreads*npes threads on npes proces-
sors. Each processor receives nthreads threads.

� Each processor could also be a node on an SMP.

9

Computer architecture and programming

models

� Memory speed will always lag processor speed.

� Shared memory will scale only so far.

Exotic new architectures (HTMT, MTA, etc) attempt various means of latency hiding. PIM
attempts to reduce physical distance to memory. But physically distributed memory is a
fact of life for the foreseeable future.

To deal with physically distributed memory, one must either have explicit communication
(message-passing or remote memory access) or rely on compilers to do the dirty work
(ccNUMA).

The MPP modules define a clean interface to various hardware models of physically dis-

tributed memory.

10

The MPP modules

GFDL has a homegrown parallelism API written as a set of 3 F90 modules:

� mpp_mod is a low-level interface to message-passing APIs (currently
SHMEM and MPI; MPI-2 and Co-Array Fortran to come);

� mpp_domains_mod is a set of higher-level routines for domain de-
composition and domain updates;

� mpp_io_mod is a set of routines for parallel I/O.

http://www.gfdl.gov/˜vb

11

mpp_mod

mpp_mod is a set of simple calls to provide a uniform interface to different
message-passing libraries. It currently can be implemented either in the
SGI/Cray native SHMEM library or in the MPI standard. Other libraries
(e.g MPI-2, Co-Array Fortran) can be incorporated as the need arises.

mpp_mod is currently in use in all FMS models at GFDL.

12

mpp mod design issues

� Simple, minimal API, with free access to underlying API for more com-
plicated stuff.

� Design toward typical use in climate/weather CFD codes (rectilinear
grid, halo update, data transpose).

� Performance to be not significantly lower than any native API.

13

mpp mod API

� Basic calls:

– mpp_init()

– mpp_exit()

– mpp_transmit(): basic message passing call. Typical use assumes two
transmissions per domain, e.g halo update.

– mpp_sync()

– mpp_error()

� Reduction operators:

– mpp_max()

– mpp_sum()

– etc.

14

Implementation of mpp transmit

� MPI: MPI_Isend() and MPI_Recv().

� SHMEM: shmem_get.

� on shared memory: direct copy.

� on ccNUMA: send address, then direct copy.

15

mpp transmit performance

SHMEM implementation of mpp transmit on T3E:

� Latency: 11 � s (3 � s for bare shmem_get).

� Peak bandwidth: 300 Mb/s.

� For messages longer than 1000 words, the two are not distinguishable.

Latency increase is due to code to handle dynamic arrays.

MPI bandwidth is 150 Mb/s. T90 bandwidth is 5 Gb/s.
16

mpp_domains_mod : domain class library
Definition of domain:

� Global domain: the entire model grid.

� Compute domain: set of points calculated by a PE.

� Data domain: set of points required by the computation (i.e including halo).

All the information required for domain-related operations are maintained in compact form

in the domain types supplied by mpp_domains_mod . Complicated grids, such as the

bipolar grid and the cubed sphere can be represented in this class, so long as they are

logically rectilinear.

17

The domain type
type, public :: domain_axis_spec

integer :: start_index, end_index, size, max_size
logical :: is_global

end type domain_axis_spec
type, public :: domain1D

type(domain_axis_spec) :: compute, data, global
integer :: ndomains
integer :: pe, node
integer, dimension(:), pointer :: pelist
type(domain1D), pointer :: prev, next

end type domain1D

18

!domaintypes of higher rank can be constructed from type domain1D
type, public :: domain2D

sequence
type(domain1D) :: x
type(domain1D) :: y
integer :: pe, node
type(domain2D), pointer :: west, east, south, north

end type domain2D

(1,1)

(ni,nj)

(is,js)

(ie,je)

19

The domain2D type contains all the necessary information to define the
global, compute and data domains of each task, as well as the PE asso-
ciated with the task. The PEs from which remote data may be acquired to
update the data domain are also contained in a linked list of neighbours.

20

mpp domains mod calls:

� mpp_define_domains()

� mpp_update_domains()

type(domain2D) :: domain(0:npes-1)
call mpp_define_domains((/1,ni,1,nj/), domain, xhalo=2, yhalo=2)
...
!allocate f(i,j) on data domain
!compute f(i,j) on compute domain
...
call mpp_update_domains(f, domain(pe))

21

mpp io mod: a parallel I/O interface

mpp_io_mod is a set of simple calls to simplify I/O from a parallel process-
ing environment. It uses the domain decomposition and communication
interfaces of mpp_mod and mpp_domains_mod . It is designed to deliver
high-performance I/O from distributed data, in the form of self-describing
files (verbose metadata).

22

Features of mpp_io_mod

� Simple, minimal API, with freedom of access to native APIs.

� Strong focus on performance of parallel write.

� Accepts netCDF format, widely used in the climate/weather community. Extensible
to other formats.

� May require post-processing, generic tool for this to be provided by GFDL.

� Compact dataset (comprehensively self-describing).

� Final dataset may bear no trace of parallelism.

23

mpp io mod output modes

mpp_io_mod supports three types of parallel I/O:

� Single-threaded I/O: a single PE acquires all the data and writes it out.

� Multi-threaded, single-fileset I/O: many PEs write to a single file.

� Multi-threaded, multi-fileset I/O: many PEs write to independent files
(requires post-processing).

24

mpp io mod API

� mpp_io_init()

� mpp_open()

� mpp_close()

� mpp_read()

� mpp_write()

� mpp_write_meta()

25

Metadata

Since the datasets are required to be compact (comprehensively self-describing)
we associate metadata in the file header associated with each axis and
field in the file. Metadata contains names and units for each variable, as
well as associating each field with a number of axes. Optional attributes
can be specified to describe data masks, missing data, scaling, packing,
etc. These use the derived types axistype and fieldtype use associ-
ated from mpp_io_mod .

26

mpp open
The key call is mpp_open(). Most information about type of I/O to be performed is
contained here:

call mpp_open(unit, file, action=MPP_WRONLY, format=MPP_IEEE32, &
access=MPP_SEQUENTIAL, threading=MPP_SINGLE, iospec=’-F cachea’)

Format can be one of MPP_ASCII, MPP_IEEE32, MPP_NATIVE, or MPP_NETCDF.

Single-threaded I/O from multiple PEs means PE0 will acquire all the data and do the

actual write.

27

Multi-threaded I/O

call mpp_open(unit, file, action=MPP_WRONLY, format=MPP_IEEE32, &

access=MPP_SEQUENTIAL, threading=MPP_MULTI, fileset=MPP_MULTI)

Multi-threaded I/O can have all PEs write to a single file or each to an
independent file, which must later be assembled (a generic tool for this is
available). It offers the possibility of high-performance I/O when parallel
filesystems are buggy or slow.

28

mpp io mod calling sequence
type(domain2D) :: domain(0:npes-1)
type(axistype) :: x, y, z, t
type(fieldtype) :: field
integer :: unit
character*(*) :: file
real, allocatable :: f(:,:,:)
call mpp_define_domains((/1,ni,1,nj/), domain)
call mpp_open(unit, file, action=MPP_WRONLY, format=MPP_IEEE32, &
access=MPP_SEQUENTIAL, threading=MPP_SINGLE)

call mpp_write_meta(unit, x, ’X’, ’km’, ...)
...
call mpp_write_meta(unit, field, (/x,y,z,t/), ’Temperature’, ’kelvin’, ...)
...
call mpp_write(unit, field, domain(pe), f, tstamp)

29

Parallel numerical kernels
��� �� � ���

� �

� � 	
��
 � �� (1)

� � �� � � �
� �

� � �
�� � �� � � k �
�

� � �� � � �
� �
� F (2)

program shallow_water
type(scalar2D) :: eta(0:1)
type(hvector2D) :: utmp, u, forcing
integer tau=0, taup1=1

...
f2 = 1./(1.+dt*dt*f*f)
do l = 1,nt

eta(taup1) = eta(tau) - (dt*h)*div(u)
utmp = u - (dt*g)*grad(eta(tau)) + (dt*f)*kcross(u) + dt*forcing
u = f2*(utmp + (dt*f)*kcross(utmp))
tau = 1 - tau
taup1 = 1 - taup1

end do
end program shallow_water

30

� Runs and reproduces answers on t90, t3e, SGI, Beowulf.

� No parallel calls.

� Memory scaling (except for halo region overhead).

� 400 Mflops, 800 Mmops, on t90 � � � � � � � .

� 80% scaling on � � � PEs on t3e.

� Abstraction penalty about 20% on MOM 2p.

� Standard f90 (Cray, SGI, PGF90...)

31

The distributed grid class
module distributed_grids
use mpp_domains_mod
implicit none
private
type, public :: scalar2D

real, pointer :: data(:,:)
integer :: is, ie, js, je

end type scalar2D
type, public :: hvector2D

type(scalar2D) :: x, y
integer :: is, ie, js, je

end type hvector2D

32

Abstract difference operators

� � ��� � � �	�
 �� �
 �	
 � � (3)

� �� � �� � � ��
 � (4)

� �� �
 � �
 �� � � (5)

�

�

� � �
� � �

33

function grad_scalar2D(scalar)
type(hvector2D) :: grad_scalar2D
type(scalar2D), intent(inout) :: scalar

...
if(scalar%ie.LE.ie .OR. scalar%je.LE.je)then

call mpp_update_domains(scalar%data, domain, EUPDATE+NUPDATE)
scalar%ie = ied
scalar%je = jed

end if
grad_scalar2D%is = scalar%is; grad_scalar2D%ie = scalar%ie - 1
grad_scalar2D%js = scalar%js; grad_scalar2D%je = scalar%je - 1

!dir$ IVDEP
do j = grad_scalar2D%js,grad_scalar2D%je

do i = grad_scalar2D%is,grad_scalar2D%ie
tmp1 = scalar%data(i+1,j+1) - scalar%data(i,j)
tmp2 = scalar%data(i+1,j) - scalar%data(i,j+1)
work2D(i,j,nbuf2) = gradx(i,j)*(tmp1 + tmp2)
work2D(i,j,nbufy) = grady(i,j)*(tmp1 - tmp2)

end do
end do

34

Features of differencing operators

� Details of numerics are hidden from high-level code.

� Highly optimized numerical kernels without sacrificing readability.

� Extensible: can overload different algorithms as required or desired.

� Grid metrics are set once, at initialization.

� Update domains only as required, with no user intervention, including one-sided
updates.

� Builtin use of wide halos for balancing computation with communication.

35

Wide halos
On a machine with a slow interconnect, we can choose to replace communication by
redundant computation:

� Points in the active domain may be computed on more than one PE.

� Active domain is reduced until there are not enough points left to update the compu-
tational domain.

� Then update halos. This may only occur once every several timesteps.

call mpp_update_domains(..., xhalo=1, yhalo=1)
call mpp_update_domains(..., xhalo=6, yhalo=6)

36

MPP modules: summary

� Minimalist approach: directly use underlying APIs for more complex requirements.

� Uniform interface to various software expressions and hardware models of paral-
lelism through an abstract representation of a domain.

� Specialized to typical weather/climate codes (logically rectilinear grids, permuted
communication, halo update, data transpose).

� Simple, modular, extensible and debuggable by “ordinary users”.

� Simple, extensible parallel I/O interface, with focus on parallel writes.

37

Future directions

� Implementation of abstract parallel numerical kernels in FMS.

� Multi-threading.

� Asynchronous model coupling.

� Dynamic load balancing.

� Development of adjoint operators.

� Possible future needs:

– Code-controlled checkpointing.

– Unstructured grids.

– Distributed computing.

38

